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The incompressible flow in a labyrinth seal is computed using the ‘IC-e’ turbulence 
model with a pressure-velocity computer code in order to explain leakage phenomena 
against the mean pressure gradient. The flow is axisymmetric between a rotating shaft 
and an enclosing cylinder at  rest. The main stream in circumferential direction induces 
a secondary mean flow vortex pattern inside annular cavities on the surface of the 
shaft. The domain of interest is one such cavity of an enlarged model of a labyrinth 
seal, where the finite difference result of a computer program is compared with 
measurements obtained by a back-scattering laser-Doppler anemometer at  a cavity 
Reynolds number of N 3 x lo4 and a Taylor number of - 1-2 x lo4. The turbulent 
kinetic energy and the turbulence dissipation rate are verified experimentally for a 
comparison with the result of the turbulence model. 

1. Introduction 
Labyrinth seals are fitted into a mechanical installation in order to prevent friction 

between the casing and the shaft at high revving. With an imposed pressure gradient 
along the shaft, it  is possible to generate an axial flow which should prevent mass 
transfer from a downstream location in the upstream direction. In  spite of the presence 
of such an imposed fluid barrier, it has been found in some cases that transport of 
matter (e.g. oil or vapour droplets) may occur. The subject of this study has been to 
compute the flow pattern and to consider the effect of turbulence on the mean flow 
field. 

2. The experimental installation 
The real scale size of the labyrinth under consideration is too small for the measure- 

ment of velocity profiles. This is the reason why the present study concentrates on 
the enlarged model of Boyman & Suter (1978) following the similarity conditions of 
Reynolds and Taylor with water as operating fluid. The shaft, with five baffles 
separating four annular chambers of the labyrinth, rotates about its vertical axis 
inside a smooth cylinder. A Plexiglas window allows for optical measurements in the 
domain. The leakage flux mounts along the shaft. Its flow rate is checked with a 
rotameter. The computational domain consists of one of the annular cavities between 
the baffles (figure 1) with a gap-to-radius ratio of d / r  M 0.1. In  a turbomachine the 

Present address: Brown Boveri & Co., Ltd., Dept. TCT-13, CH-5401 Baden, Switzerland. 

0022-1120/800/4K61-i940 $02.00 0 1980 Cambridge University Press 



818 H .  Stoff 

FIGURE 1. Schematic view of the flow configuration around the shaft at one cell of the labyrinth 
with the shape of the mean circumferential velocity profile (E) and the recirculation flow pattern 
in a constrtnt q5 plane. 

size of this value is imposed by considerations concerning the mechanical vibrations 
of the shaft. Laser-Doppler measurements exhibit the following features of the flow 
pattern. 

(i) The circumferential bulk velocity W, is about 0.65 times the speed of the shaft 
which is, due to the baffles, superior to the value of 0-5 for the rotating Couette flow 
between a smooth shaft and an enclosing cylinder (Taylor 1935). 

(ii) The inlet velocity in the axial direction at the pamage over the bases is defined 
by the operating conditions for a real size machine as 0.036 times the circumferential 
velocity of the shaft. A double helix with meridional velocities of up to 10 % of the 
rotational speed of the shaft occupies the chamber between the bafles. 

The conditions of the flow are thus characterized by the Reynolds and the Taylor 
number based on the bulk velocity W,, the kinematic viscosity v, the radius r of the 
shaft, and the distance d between the bottom of the cavity and the enclosing cylinder; 

Recavity = y K d  w 3 x  lo4; Ta = 

3. The basic equations 
For the axisymmetric installation the computation may be reduced to a two- 

dimensional problem with three velocity components, the circumferential derivative 
a( ) /a$ being zero. 

The Taylor number in this case is of the order of 10 times the critical value. In the 
work of Swinney, Gollub & Fenstermacher it is suggested that turbulence does not 
occur until 400 times the critical value of the Taylor number, and that the velocity 
&xtuations are rather due to vortex waves than to turbulence (Gollub & Swinney 
1975; Haken 1977). The present investigation does not include a detailed study 
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TABLE 1. Mean continuity and momentum equations for ths steady 
axisymmetric flow in the labyrinth. 

about the form of the fine-scale motion over a range of Taylor numbers. The tangential 
velocity auto-correlation functions, measured in circumferential direction from 50- 
200 % of the nominal rotational speed, exhibit a shape of the kinetic energy spectrum 
comparable to turbulence. Therefore a turbulence model should be apt of describing 
the effect of the fluctuating kinetic energy on the mean momentum, regardless of a 
wave-like or a turbulent character of the motion. With the effect of the fluctuations 
accounted for by the turbulence model, the set of equations for the transport of mean 
flow quantities reduces further to the steady-state form with a( )/at = 0. The system 
of equations to be solved for this problem is given in table 1, equations (1)-(4). A 
solution is achieved with the set of flow equations in table 2 used also by Gosman 
et al. (1976), Hutchinson et al. (1976) and Lilley (1976), consisting of the continuity 
equation (5 ) ,  three momentum equations (6), (7) and (8) for the mean velocity com- 
ponents (E ,  V, W) in two dimensions. Additional information for the velocity fluctuations 
(u’, v‘, w’) is provided by a two-equation turbulence model. 

A closure with a simple algebraic expression for an effective viscosity based on the 
shear stress, causes the turbulence diffusion to decrease too rapidly outside the 
boundary layers. In such a computation the helical movement in the meridional plane 
does not coincide with the experimental observations. A transport equation can carry 
turbulence energy outside the regions of strong shear towards the centre of the domain. 
A second transport equation for the variations in the turbulence dissipation replaces 
the need for a suitable flow-dependent dissipation scale. The original form of the 
Saffman two-equation model gives too low values.for the effective viscosity. Satisfac- 
tory results are computed with the ‘k-e’ model in the form given by Gosman & Pun 
(1974). Therefore the transport of two more quantities is incorporated into the system 
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aiii a@ aa 9 a 
G = p8 [ 2 [ (g) a + (g) a + (;") '1 + (r + 3' + (3a + ( a7- - --) 1. 

C~ = 0.09; U, = 1; U, = 1-21; CD = 1; C, = 1.44; c2 = 1.92 

T A B ~ E  2. The equations solved in the computer program. 

of nonlinear equations in table 2: kinetic energy 4 4 2  and dissipation e of turbulence 
with equations (10) and (11) respectively. The usual notation 'h' has been changed 
in the following to 'q2-e' in order to retain k for the wavenumber. 

For the rectangular configuration of the labyrinth, we have decided to rely on an 
implicit finite difference code of Gosman & Pun (1974) which has proved to be success- 
ful in similar cases (Gosman et al. 1976; Hutchinson et al. 1976; Lilley 1976). The 
iterative pressure-velocity procedure fulfils the incompressibility condition by means 
of a pressure-correction potential. With a computational grid over the whole domain, 
only a few points remain inside the boundary layer which is of about 10 yo of the 
cavity width. Therefore the boundary values attributed to the points closest to the 
limits are very important for the success of the computation. The wall formulae used 
by Gosman & Pun (1974) have been adopted without changes on the stationary and 
the moving boundaries (table 3, equations (12)-( 15)). Although the logarithmic form 
for the velocity profile on the spinning cylinder is certainly a crude assumption, this 
law gives rise to acceptable overall results. It is not possible to base the computation 
on more detailed measurements in the wall proximity, because the reflexions of light 
prohibit laser measurements inside the boundary layer close to the walls, especially 
on the rotating shaft. A more severe influence than the use of the logarithmic velocity 
law on the moving surfaces is introduced by the boundary conditions at the inlet and 
outlet of the computational domain. The axial velocity component ;ii needs a fixed 
value at the inflow and at the outflow slot. For all other variables, good results have 
been achieved by feeding the iterated values for the outlet back into the inlet a t  the 
end of each iteration step. This implies the sequence of identical labyrinth chambers 
in a row on the shaft. 
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(12) 
A?i 1 

Velocity for y+ > 11 - = - (ICY+). 
V7 K 

pc:(q8/2)* AGK 
Turbulent shear stress 7 = 

(EY+) 

q2 - u: 
2 c: - Turbulence energy - - - 

(15) 
u,s 
KY * 

Dissipation of turbulence B = - 

AG = velocity parallel to the wall; V, = ( ~ / p ) #  = friction velocity; y = distance from the wall; 
y+ = ;yU,/v; 7 = shear stress; p = density; v = kinematic Viscosity; K = 0.4187; E = 9.793; 

TABLE 3. The solid-wall boundary conditions in the computer program. 
cp = 0.09. 
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FI~TJRE 2. Radial distribution of the mean circumferential velocity, comparison of 
finite difference result (- - - ) and LDA measurements ( 0, V ) . 

4. The energy-dissipation model for the case of the labyrinth 
In  many of the applications of a turbulence model to a real flow, an experimental 

verification is made only for the turbulence energy or the shear stress, but the distri- 
bution of the dissipation rate 8 in the flow field is just assumed. The conditions of the 
flow in a labyrinth seal were rather unexplored. Therefore a more detailed investigation 
of the size of the dissipative scale was attempted in this work. Its description is given 
in the next paragraph. 

Considering the measurement possibilities in the installation, the standard version 
of the ‘q2--e’ model gives a satisfactory result without adjusting mode1 constants to 
the conditions in the labyrinth (figures 2 and 3). Suggestions for a, special treatment 
of the turbulence under the influence of swirl or streamline curvature within the two- 
equation model is based on either a suitable defined Richardson number (Bradshaw 
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FIGURE 3. Computed (---) and measured (-O-) distributions of the r.m.6. value 
of the circumferential velocity over the radius. 

Window , Cylinder 

FIGURE 4. Geometry of the domain in the model installation with the location of the 
laser measurements (---) and the position of the hot-film probes (dimensions in mm), 

1969; Gosman et al. 1976; Johnston 1976; Koosinlin & Lockwood 1974; Lilley 1973; 
Sharma 1977; So 1978), or on a term involving the fluctuations normal to the wall 
(Wilcox & Chambers 1977). The latter recommendation creates negative turbulence 
energy when used with the 'q2-e '  model. The Richardson-number-based swirl correc- 
tion becomes effective only in the inner part of the boundary layer which is not suffi- 
ciently resolved in our computation of the whole domain. More complex modelling of 
the turbulence structure involves Reynolds stress computation (e.g. Launder, Reece & 
Rodi 1975) which does not seem to guarantee success within the accuracy of the com- 
putational methods available for this case. The main obstacles in the tentative uae of 
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FIUURE 5. Recirculation in the plane of the secondary flow without 
an imposed axial leakage velocity (grid 40 x 40 points). 

algebraic Reynolds stress modelling were lack of convergence in the numerical method 
and the realizability of a physically meaningful solution of the turbulence energy. 

The result obtained with the two-equation ' q2-e ' model exhibits clearly a dependence 
of the flow pattern on the ratio of axial inlet velocity V,, versus circumferential 
velocity Wbulk. In  the absence of an axial throughflow, two vortices are generated by 
the acceleration of the flow close to the revolving baffles (figure 5). When i&/wb,,k = 
0.06, the two vortices remain existent, but they are dislocated (figure 6). For 
qn > Wbulk the flow approaches the case of the driven cavity (figure 7). The compu- 
tation under operating conditions compares well with the pattern obtained by Boyman 
& Suter (1978). Experimental investigations in short annuli by Cole (1976) and Benja- 
min (1978) lend support to the results of this work. Alziary de Roquefort & Grillaud 
(1978) confirm our secondary-flow solution with their computation in a similar 
configuration in the absence of axial through-flow. 

5. Experimental verification of the dissipation rate E 

The experimental verification of the turbulence dissipation rate e is more laborious 
than that of the kinetic energy iq2.  Direct measurements of the spatial gradient of 
the fluctuating velocities in two points were ruled out, because it was not possible to 
access the flow domain by the two available anemometers at the same time. 
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FIGURE 6. Secondary flow field in a grid of 20 x 20 points with a 
leakage velocity of V,, = 0.036 Rhlt. 

Supposing the turbulent fluctuations to be isotropic, which is a reasonable approxi- 
mation for the inner domain of the labyrinth, two relations allow 8 to be computed 
from measurements. 

(i) The expression for the isotropic turbulence dissipation as a function of the 
Taylor microscale. 

(ii) The formula for the inertial subrange in the energy spectrum. 
(a)  For the special case of isotropic conditions, the rate of dissipation of turbulence 

energy can be approximated in the simple form 

with v as kinematic viscosity, A for the Taylor microscale and w' for the circumferential 
velocity fluctuations (Hinze 1975, p. 219). 2 2  and h are accessible to measurements. 
Two different methods for the quantification of A were tried. 

(i) The microscale A, defined as a function of the radius of curvature a t  the beginning 
of the correlation function R,, makes it possible to write in our case 

(time scale), 
7=O 

w'(t). W ' ( t + 7 )  

W'20 R, = where 
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FIUURE 7. Secondary flow pattern in a grid of 20 x 20 points with a 
leakage velocity of V, > Kbft. 

0.430 0.425 0 4  i 0-5 0.6 0.7 

W ,  Wconveotion (ms-') 
FIUURE 8. Comparison between the convection velocity (1) measured outside the domain with 
hot film probes and the mean velocity (2) at a corresponding radius inside the domain obtained 
with a laser-Doppler anemometer (cf. figure 4). 
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and T is the correlation time. Taylor’s hypothesis of frozen turbulence allows to trans- 
form h = Ght, though with an error of up to 20 % (figure 8; Rotta 1972, p. 148). 

(5) Another related possibility to establish h involves the derivative of the velocity 
(Tennekes & Lumley 1973, p. 211): 

( b )  Kolmogorov’s second similarity hypothesis predicts a power ( - 8) slope in the 
inertial subrange of the energy spectrum of high-Reynolds-number turbulence 
(Re 2 104- 105). The mathematical relation for this subregion gives the kinetic 
energy E,  of turbulence as a function of the turbulence dissipation e and the wave- 
number k, (Lawn 1971): 

E, = 0*53&k$. 

This energy spectrum can be visualized directly on commercial spectrum analysers, 
but it has been found more practical to use the Fourier transformed auto-correlation 
data from a multichannel analyser (correlator) : 

where rw = Gi-. The necessary sampling rate is more clearly detectable in the horizontal 
start of the auto-correlation curve than in the shape of the high-frequency range of 
the spectrum. The Reynolds number in the labyrinth is a t  the lower limit of the range 
of applicability of this spectral procedure, and thus the inertial subrange is not always 
clearly visible with a constant power ( -9) slope. In  such a case e is deduced from the 
point in the logarithmic spectrum, into which a ( - 8) tangent can be fitted. 

6. Discrepancies in the dissipation measurements 
The auto-correlation function, when measured with a laser of 5 mW (BBC-GOERZ) 

or 3 W (DISA), shows considerable variations (figure 9). A significant feature is the 
steep descent of the auto-correlation curves obtained with the 3 W laser-Doppler 
anemometer. Apparently the strong illumination causes a broadening of the Doppler 
spectrum towards higher frequencies due to the detection of back-scattering from 
more than one particle in the control volume. Obviously the measurement of fine-scale 
turbulence is dependent on the optical conditions: both, the DISA tracker and the 
BBC-GOERZ tracker, exhibit the same trend in the auto-correlation function when 
they are used with the 3 W laser. This supports the recommendation of Lawn (1971) 
for hot-wire measurements in pipe flow, to use rather the inertial subrange of the 
energy spectrum than the microscale measurement for the determination of e, provided 
the Reynolds number is above lo4. Figure 10 demonstrates the result of the dissipation 
values derived from the measurements and from the ‘q2-e’ computation. When 
looking a t  the discrepancies, one should keep in mind that the dissipation in general 
is verified least successfully among the physical variables involved and that also the 
transport model equation for e is the equation most subject to model assumptions. 
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FIQIJRE 9. Trends in the auto-correlation function measured with: (a) LDA BBC-GOERZ and 
correlator DIDAC 800; (a) LDA DISA and correlator HONEYWELL SAI-43A; (c) Hot-film 
anemometer and correlator DIDAC 800. 

0.4115 - 

V 

\ 
\ 
I 
I 
/ 

\ 

----__- '. 
I 0 4  10-3 10-2 

FIQURE 10. Dissipation of turbulence obtained by the energy -dissipation model of turbulence 
(---), and values computed from measured data of the velocity derivative (0) and the energy 
spectrum ( A  = LDA BBC, V = LDA DISA). 
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7. Conclusions 
The finite difference computer program gives a satisfactory answer to the problem 

of leakage in the labyrinth seal. The influence of the turbulent fluctuations on the 
mean momentum transport is sufficiently well represented by the two-equation energy- 
dissipa.tion turbulence model. A more detailed modelling over the entire cavity of the 
labyrinth does not seem to be justified in connexion with the present numerical 
solution method. 
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Laser-Doppler measurements become increasingly difficult close to the solid walls 
and for components off the circumferential direction, i.e. the principal velocity com- 
ponent. The auto-correlation curves show a dependence on the laser power of the 
anemometer or the particle concentration. Though the ambiguity effect (cf. George & 
Lumley 1973) can be excluded, because the fringe system is comparable to the Kolmo- 
gorov length scale in size, a broadening of the Doppler spectrum seems to be responsible 
for the erroneous fine-scale data of turbulence. 

I am indebted to Professor P. Suter and to the late Professor F. Baatard from Ecole 
Polytechnique FBd6rale de Lausanne for their help in the accomplishment of this work. 
Valuable discussions with Professor B. Chaix from Eidgenossische Technische Hoch- 
schule Zurich are gratefully acknowledged. Professor D. B. Spalding from Imperial 
College London kindly allowed me to benefit from his experience in computational 
methods for turbulent flows. 
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